Separated Lie Models and the Homotopy Lie Algebra
نویسنده
چکیده
A simply connected topological space X has homotopy Lie algebra ( X) Q. Following Quillen, there is a connected di erential graded free Lie algebra (dgL) called a Lie model, which determines the rational homotopy type of X , and whose homology is isomorphic to the homotopy Lie algebra. We show that such a Lie model can be replaced with one that has a special property we call separated. The homology of a separated dgL has a particular form which lends itself to calculations.
منابع مشابه
Free Cell Attachments and the Rational Homotopy Lie Algebra
Given a space X let LX denote its rational homotopy Lie algebra π∗(ΩX) ⊗ Q. A cell attachment f : ∨iSi → X is said to be free if the Lie ideal in LX generated by f is a free Lie algebra. This condition is shown to be general in the following sense. Given a space X with rational cone length N , then X is rationally homotopy equivalent to a space constructed using at most N + 1 free cell attachme...
متن کاملLattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملOn dimensions of derived algebra and central factor of a Lie algebra
Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کامل